Processing math: 100%
Subalgebra A12+A41A16
41 out of 61
Computations done by the calculator project.

Subalgebra type: A12+A41 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A12 .
Centralizer: T2 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A16
Basis of Cartan of centralizer: 2 vectors: (0, 1, 2, -1, 0, 0), (1, -1, -3, 0, -2, -1)

Elements Cartan subalgebra scaled to act by two by components: A12: (1, 1, 1, 1, 1, 1): 2, (0, 0, 0, 0, 0, -1): 2, A41: (0, 2, 2, 2, 0, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: g21, g6, g2+g9
Positive simple generators: g21, g6, 2g9+2g2
Cartan symmetric matrix: (210120001/2)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (210120008)
Decomposition of ambient Lie algebra: V4ω3Vω2+2ω3Vω1+2ω33V2ω3Vω1+ω2Vω2Vω12V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+2ω32ψ1+6ψ2V2ω38ψ1+10ψ2V4ω3Vω1+6ψ14ψ2V2ω3Vω1+ω22V0V2ω3+8ψ110ψ2Vω26ψ1+4ψ2Vω2+2ω3+2ψ16ψ2
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 11) ; the vectors are over the primal subalgebra.h62h53h3h2+h1h4+2h3+h2g12g10g19g8g9+g2g4g16g17g13
weight00ω1ω2ω1+ω22ω32ω32ω3ω1+2ω3ω2+2ω34ω3
weights rel. to Cartan of (centralizer+semisimple s.a.). 00ω1+6ψ14ψ2ω26ψ1+4ψ2ω1+ω22ω3+8ψ110ψ22ω32ω38ψ1+10ψ2ω1+2ω32ψ1+6ψ2ω2+2ω3+2ψ16ψ24ω3
Isotypic module decomposition over primal subalgebra (total 10 isotypic components).
Isotypical components + highest weightV0 → (0, 0, 0, 0, 0)Vω1+6ψ14ψ2 → (1, 0, 0, 6, -4)Vω26ψ1+4ψ2 → (0, 1, 0, -6, 4)Vω1+ω2 → (1, 1, 0, 0, 0)V2ω3+8ψ110ψ2 → (0, 0, 2, 8, -10)V2ω3 → (0, 0, 2, 0, 0)V2ω38ψ1+10ψ2 → (0, 0, 2, -8, 10)Vω1+2ω32ψ1+6ψ2 → (1, 0, 2, -2, 6)Vω2+2ω3+2ψ16ψ2 → (0, 1, 2, 2, -6)V4ω3 → (0, 0, 4, 0, 0)
Module label W1W2W3W4W5W6W7W8W9W10
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Cartan of centralizer component.
h62h53h3h2+h1
h4+2h3+h2
g12
g15
g10
g10
g15
g12
Semisimple subalgebra component.
g19
g6
g21
h6
h6h5h4h3h2h1
g21
2g6
g19
g8
g3
g4
Semisimple subalgebra component.
g9g2
h4+h3+h2
g2+g9
g4
g3
g8
g16
g11
g7
g5
g18
g1
g14
g20
g17
g17
g20
g14
g1
g18
g5
g7
g11
g16
g13
g9g2
h4h3+h2
3g23g9
6g13
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above0ω1
ω1+ω2
ω2
ω2
ω1ω2
ω1
ω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
2ω3
0
2ω3
2ω3
0
2ω3
2ω3
0
2ω3
ω1+2ω3
ω1+ω2+2ω3
ω1
ω2+2ω3
ω1+ω2
ω12ω3
ω2
ω1+ω22ω3
ω22ω3
ω2+2ω3
ω1ω2+2ω3
ω2
ω1+2ω3
ω1ω2
ω22ω3
ω1
ω1ω22ω3
ω12ω3
4ω3
2ω3
0
2ω3
4ω3
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer0ω1+6ψ14ψ2
ω1+ω2+6ψ14ψ2
ω2+6ψ14ψ2
ω26ψ1+4ψ2
ω1ω26ψ1+4ψ2
ω16ψ1+4ψ2
ω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
2ω3+8ψ110ψ2
8ψ110ψ2
2ω3+8ψ110ψ2
2ω3
0
2ω3
2ω38ψ1+10ψ2
8ψ1+10ψ2
2ω38ψ1+10ψ2
ω1+2ω32ψ1+6ψ2
ω1+ω2+2ω32ψ1+6ψ2
ω12ψ1+6ψ2
ω2+2ω32ψ1+6ψ2
ω1+ω22ψ1+6ψ2
ω12ω32ψ1+6ψ2
ω22ψ1+6ψ2
ω1+ω22ω32ψ1+6ψ2
ω22ω32ψ1+6ψ2
ω2+2ω3+2ψ16ψ2
ω1ω2+2ω3+2ψ16ψ2
ω2+2ψ16ψ2
ω1+2ω3+2ψ16ψ2
ω1ω2+2ψ16ψ2
ω22ω3+2ψ16ψ2
ω1+2ψ16ψ2
ω1ω22ω3+2ψ16ψ2
ω12ω3+2ψ16ψ2
4ω3
2ω3
0
2ω3
4ω3
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M0Mω1+6ψ14ψ2Mω1+ω2+6ψ14ψ2Mω2+6ψ14ψ2Mω26ψ1+4ψ2Mω1ω26ψ1+4ψ2Mω16ψ1+4ψ2Mω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2M2ω3+8ψ110ψ2M8ψ110ψ2M2ω3+8ψ110ψ2M2ω3M0M2ω3M2ω38ψ1+10ψ2M8ψ1+10ψ2M2ω38ψ1+10ψ2Mω1+2ω32ψ1+6ψ2Mω1+ω2+2ω32ψ1+6ψ2Mω2+2ω32ψ1+6ψ2Mω12ψ1+6ψ2Mω1+ω22ψ1+6ψ2Mω22ψ1+6ψ2Mω12ω32ψ1+6ψ2Mω1+ω22ω32ψ1+6ψ2Mω22ω32ψ1+6ψ2Mω2+2ω3+2ψ16ψ2Mω1ω2+2ω3+2ψ16ψ2Mω1+2ω3+2ψ16ψ2Mω2+2ψ16ψ2Mω1ω2+2ψ16ψ2Mω1+2ψ16ψ2Mω22ω3+2ψ16ψ2Mω1ω22ω3+2ψ16ψ2Mω12ω3+2ψ16ψ2M4ω3M2ω3M0M2ω3M4ω3
Isotypic character2M0Mω1+6ψ14ψ2Mω1+ω2+6ψ14ψ2Mω2+6ψ14ψ2Mω26ψ1+4ψ2Mω1ω26ψ1+4ψ2Mω16ψ1+4ψ2Mω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2M2ω3+8ψ110ψ2M8ψ110ψ2M2ω3+8ψ110ψ2M2ω3M0M2ω3M2ω38ψ1+10ψ2M8ψ1+10ψ2M2ω38ψ1+10ψ2Mω1+2ω32ψ1+6ψ2Mω1+ω2+2ω32ψ1+6ψ2Mω2+2ω32ψ1+6ψ2Mω12ψ1+6ψ2Mω1+ω22ψ1+6ψ2Mω22ψ1+6ψ2Mω12ω32ψ1+6ψ2Mω1+ω22ω32ψ1+6ψ2Mω22ω32ψ1+6ψ2Mω2+2ω3+2ψ16ψ2Mω1ω2+2ω3+2ψ16ψ2Mω1+2ω3+2ψ16ψ2Mω2+2ψ16ψ2Mω1ω2+2ψ16ψ2Mω1+2ψ16ψ2Mω22ω3+2ψ16ψ2Mω1ω22ω3+2ψ16ψ2Mω12ω3+2ψ16ψ2M4ω3M2ω3M0M2ω3M4ω3

Semisimple subalgebra: W_{4}+W_{6}
Centralizer extension: W_{1}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00, 0.00): (266.67, 333.33)
1: (0.00, 1.00, 0.00, 0.00, 0.00): (233.33, 366.67)
2: (0.00, 0.00, 1.00, 0.00, 0.00): (200.00, 300.00)
3: (0.00, 0.00, 0.00, 1.00, 0.00): (200.00, 300.00)
4: (0.00, 0.00, 0.00, 0.00, 1.00): (200.00, 300.00)




Made total 267477 arithmetic operations while solving the Serre relations polynomial system.