Highest vectors of representations (total 11) ; the vectors are over the primal subalgebra. | −h6−2h5−3h3−h2+h1 | −h4+2h3+h2 | g12 | g10 | g19 | g8 | g9+g2 | g4 | g16 | g17 | g13 |
weight | 0 | 0 | ω1 | ω2 | ω1+ω2 | 2ω3 | 2ω3 | 2ω3 | ω1+2ω3 | ω2+2ω3 | 4ω3 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | 0 | 0 | ω1+6ψ1−4ψ2 | ω2−6ψ1+4ψ2 | ω1+ω2 | 2ω3+8ψ1−10ψ2 | 2ω3 | 2ω3−8ψ1+10ψ2 | ω1+2ω3−2ψ1+6ψ2 | ω2+2ω3+2ψ1−6ψ2 | 4ω3 |
Isotypical components + highest weight | V0 → (0, 0, 0, 0, 0) | Vω1+6ψ1−4ψ2 → (1, 0, 0, 6, -4) | Vω2−6ψ1+4ψ2 → (0, 1, 0, -6, 4) | Vω1+ω2 → (1, 1, 0, 0, 0) | V2ω3+8ψ1−10ψ2 → (0, 0, 2, 8, -10) | V2ω3 → (0, 0, 2, 0, 0) | V2ω3−8ψ1+10ψ2 → (0, 0, 2, -8, 10) | Vω1+2ω3−2ψ1+6ψ2 → (1, 0, 2, -2, 6) | Vω2+2ω3+2ψ1−6ψ2 → (0, 1, 2, 2, -6) | V4ω3 → (0, 0, 4, 0, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
| Semisimple subalgebra component.
|
| Semisimple subalgebra component.
|
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | ω1 −ω1+ω2 −ω2 | ω2 ω1−ω2 −ω1 | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | 2ω3 0 −2ω3 | 2ω3 0 −2ω3 | 2ω3 0 −2ω3 | ω1+2ω3 −ω1+ω2+2ω3 ω1 −ω2+2ω3 −ω1+ω2 ω1−2ω3 −ω2 −ω1+ω2−2ω3 −ω2−2ω3 | ω2+2ω3 ω1−ω2+2ω3 ω2 −ω1+2ω3 ω1−ω2 ω2−2ω3 −ω1 ω1−ω2−2ω3 −ω1−2ω3 | 4ω3 2ω3 0 −2ω3 −4ω3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 0 | ω1+6ψ1−4ψ2 −ω1+ω2+6ψ1−4ψ2 −ω2+6ψ1−4ψ2 | ω2−6ψ1+4ψ2 ω1−ω2−6ψ1+4ψ2 −ω1−6ψ1+4ψ2 | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | 2ω3+8ψ1−10ψ2 8ψ1−10ψ2 −2ω3+8ψ1−10ψ2 | 2ω3 0 −2ω3 | 2ω3−8ψ1+10ψ2 −8ψ1+10ψ2 −2ω3−8ψ1+10ψ2 | ω1+2ω3−2ψ1+6ψ2 −ω1+ω2+2ω3−2ψ1+6ψ2 ω1−2ψ1+6ψ2 −ω2+2ω3−2ψ1+6ψ2 −ω1+ω2−2ψ1+6ψ2 ω1−2ω3−2ψ1+6ψ2 −ω2−2ψ1+6ψ2 −ω1+ω2−2ω3−2ψ1+6ψ2 −ω2−2ω3−2ψ1+6ψ2 | ω2+2ω3+2ψ1−6ψ2 ω1−ω2+2ω3+2ψ1−6ψ2 ω2+2ψ1−6ψ2 −ω1+2ω3+2ψ1−6ψ2 ω1−ω2+2ψ1−6ψ2 ω2−2ω3+2ψ1−6ψ2 −ω1+2ψ1−6ψ2 ω1−ω2−2ω3+2ψ1−6ψ2 −ω1−2ω3+2ψ1−6ψ2 | 4ω3 2ω3 0 −2ω3 −4ω3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M0 | Mω1+6ψ1−4ψ2⊕M−ω1+ω2+6ψ1−4ψ2⊕M−ω2+6ψ1−4ψ2 | Mω2−6ψ1+4ψ2⊕Mω1−ω2−6ψ1+4ψ2⊕M−ω1−6ψ1+4ψ2 | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | M2ω3+8ψ1−10ψ2⊕M8ψ1−10ψ2⊕M−2ω3+8ψ1−10ψ2 | M2ω3⊕M0⊕M−2ω3 | M2ω3−8ψ1+10ψ2⊕M−8ψ1+10ψ2⊕M−2ω3−8ψ1+10ψ2 | Mω1+2ω3−2ψ1+6ψ2⊕M−ω1+ω2+2ω3−2ψ1+6ψ2⊕M−ω2+2ω3−2ψ1+6ψ2⊕Mω1−2ψ1+6ψ2⊕M−ω1+ω2−2ψ1+6ψ2⊕M−ω2−2ψ1+6ψ2⊕Mω1−2ω3−2ψ1+6ψ2⊕M−ω1+ω2−2ω3−2ψ1+6ψ2⊕M−ω2−2ω3−2ψ1+6ψ2 | Mω2+2ω3+2ψ1−6ψ2⊕Mω1−ω2+2ω3+2ψ1−6ψ2⊕M−ω1+2ω3+2ψ1−6ψ2⊕Mω2+2ψ1−6ψ2⊕Mω1−ω2+2ψ1−6ψ2⊕M−ω1+2ψ1−6ψ2⊕Mω2−2ω3+2ψ1−6ψ2⊕Mω1−ω2−2ω3+2ψ1−6ψ2⊕M−ω1−2ω3+2ψ1−6ψ2 | M4ω3⊕M2ω3⊕M0⊕M−2ω3⊕M−4ω3 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | 2M0 | Mω1+6ψ1−4ψ2⊕M−ω1+ω2+6ψ1−4ψ2⊕M−ω2+6ψ1−4ψ2 | Mω2−6ψ1+4ψ2⊕Mω1−ω2−6ψ1+4ψ2⊕M−ω1−6ψ1+4ψ2 | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | M2ω3+8ψ1−10ψ2⊕M8ψ1−10ψ2⊕M−2ω3+8ψ1−10ψ2 | M2ω3⊕M0⊕M−2ω3 | M2ω3−8ψ1+10ψ2⊕M−8ψ1+10ψ2⊕M−2ω3−8ψ1+10ψ2 | Mω1+2ω3−2ψ1+6ψ2⊕M−ω1+ω2+2ω3−2ψ1+6ψ2⊕M−ω2+2ω3−2ψ1+6ψ2⊕Mω1−2ψ1+6ψ2⊕M−ω1+ω2−2ψ1+6ψ2⊕M−ω2−2ψ1+6ψ2⊕Mω1−2ω3−2ψ1+6ψ2⊕M−ω1+ω2−2ω3−2ψ1+6ψ2⊕M−ω2−2ω3−2ψ1+6ψ2 | Mω2+2ω3+2ψ1−6ψ2⊕Mω1−ω2+2ω3+2ψ1−6ψ2⊕M−ω1+2ω3+2ψ1−6ψ2⊕Mω2+2ψ1−6ψ2⊕Mω1−ω2+2ψ1−6ψ2⊕M−ω1+2ψ1−6ψ2⊕Mω2−2ω3+2ψ1−6ψ2⊕Mω1−ω2−2ω3+2ψ1−6ψ2⊕M−ω1−2ω3+2ψ1−6ψ2 | M4ω3⊕M2ω3⊕M0⊕M−2ω3⊕M−4ω3 |